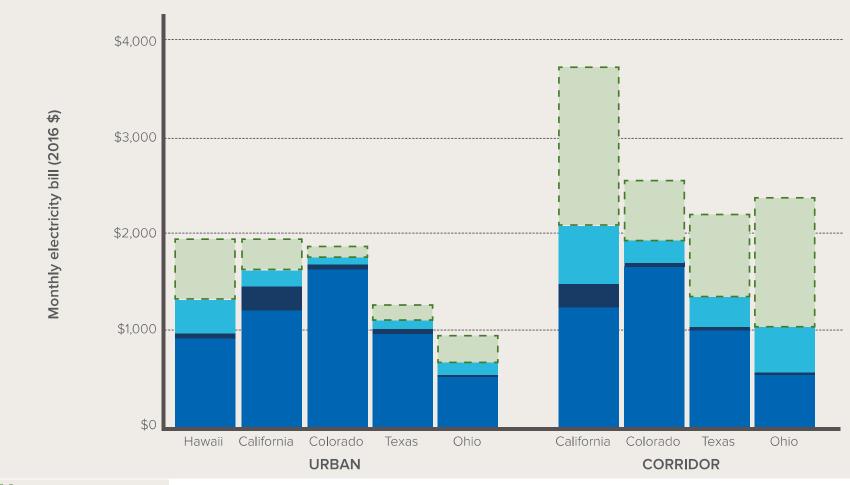

ADDRESSING GRID CONSTRAINTS THROUGH RATE DESIGN

Chris Nelder Manager, Vehicle-Grid Integration Rocky Mountain Institute

Presentation to CPUC ZEV Rate Design Forum June 7, 2018



CORRIDOR DCFC PENCIL OUT; URBAN DCFC, NOT SO MUCH

DEMAND CHARGES KILL AT LOW UTILIZATION

Energy cost with high utilization

Energy cost with low utilization

Fixed cost

Demand charge

EVGO STUDY: DEMAND CHARGES

Demand charges can make up a very high percentage of the charger's monthly bill if utilization rates are low.

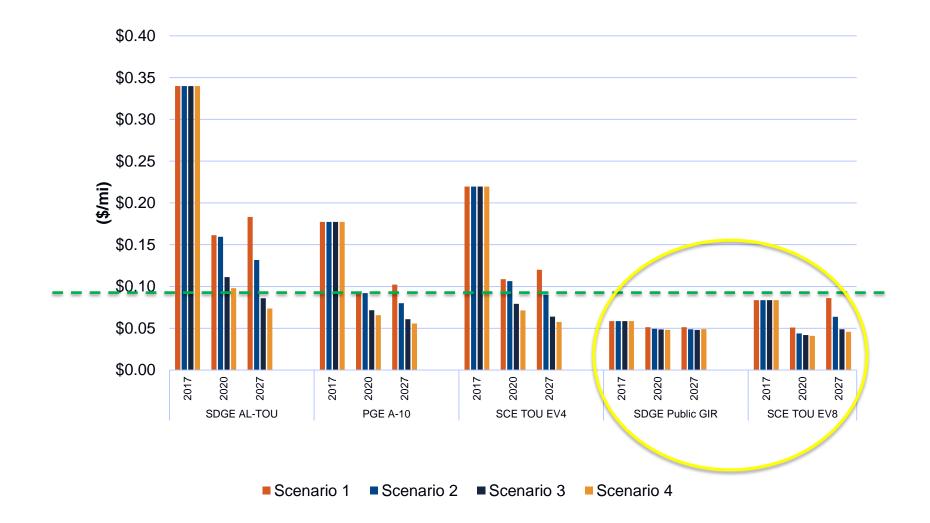
Tariff	Host Type A	Host Type B	Host Type C	Host Type D
SCE ToU EV 4 (actual)	70%	75%	77%	81%
SCE ToU EV 8 (proposed)	0	0	0	0
SDG&E AL-ToU Commercial (actual)	88%	91%	92%	94%
SDG&E Public Charging GIR (proposed)	0	0	0	0
PGE A-6 ToU with Option R (actual)	0	0	0	0
PG&E A-10 (actual)	67%	73%	76%	81%

EVGO STUDY: DEMAND CHARGES

 Tariffs with high demand charges are problematic for public DCFC with low utilization rates. Tariffs that de-emphasize demand charges are more favorable to DCFC operators.

Category	Host Type A	Host Type B	Host Type C	Host Type D
Utilization	15%	8%	8%	4%
SCE ToU EV 4 (actual)	\$1,933	\$1,817	\$1,762	\$1,682
SCE ToU EV 8 (proposed)	\$808	\$648	\$569	\$461
SDG&E AL-ToU Commercial (actual)	\$3,313	\$3,219	\$3,178	\$3,114
SDG&E Public Charging GIR (proposed)	\$501	\$329	\$255	\$138
PGE A-6 ToU (actual)	\$484	\$322	\$260	\$150
PG&E A-10 (actual)	\$1,318	\$1,197	\$1,147	\$1,065

Monthly utility bill by rate and host type


EVGO STUDY: DEMAND CHARGES

Tariffs that de-emphasize demand charges are more favorable to DCFC operators.

SCE	Fixed	Energy	Demand	Total
TOU EV4	\$220	\$278	\$1,362	\$1,938
TOU EV 8 without demand charges	\$330	\$478	\$0	\$808
TOU EV 8 with demand charges in year 11	\$330	\$368	\$792	\$1,490
SDG&E	Fixed	Energy	Demand/Dynamic	Total
AL-TOU	\$116	\$279	\$2,545	\$2,941
Public GIR	\$0	\$452	\$115	\$567

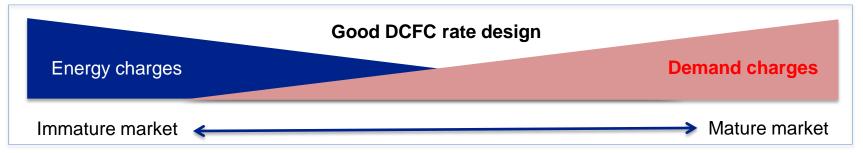
EVGO STUDY: ICE PARITY

7

PUBLIC DCFC RATE DESIGN ISSUES

- It is critical that tariffs support public charging infrastructure.
- Most existing tariffs are not designed for DCFC operators and are not suitable:
 - Do not accurately reflect the true cost of service
 - Are not consistent across utilities
 - Lack appropriate price signals for effective integration of EVs onto the grid
- DCFC utilization varies by host type, and increasing utilization eases issues with demand charges.

We need tariffs that create a better business case for DCFC owners & operators



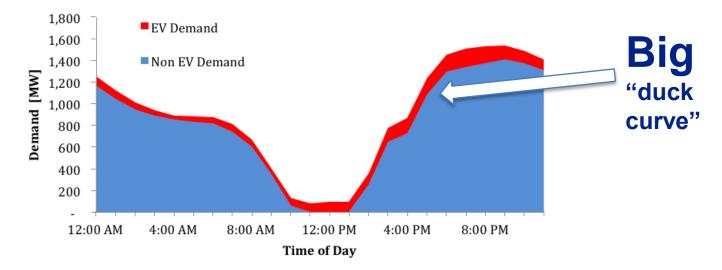
RATE DESIGN GOALS

- Charging should be **profitable** so that it is sustainable.
- Charging should always be cheaper than gasoline (typically \$0.29/kWh, or ~\$0.09/mile, or less).
- Level 2 should be considerably cheaper than DCFC.
- EV chargers should be on **dedicated tariffs** and on **separate meters**, preferably the meter built into the charging station.
- Tariffs should offer an opportunity to **earn credit for providing grid services** through managed charging.
- Ideally, utilities could leverage DERMS and offer rates that vary by location to **promote a more efficient use** of existing grid infrastructure.

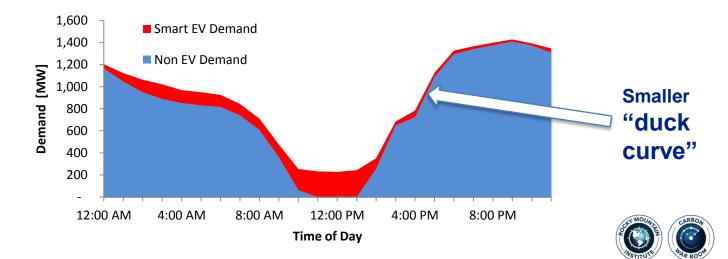
BEST PRACTICES FOR RATE DESIGN

- Tariffs should be time-varying, and preferably dynamic, while recovering most utility costs.
- Tariffs should have **low fixed charges** which primarily reflect routine costs for things like maintenance and billing.
- Tariffs should reflect the actual cost of providing service, and should charge more for **coincident peak demand.**
- Tariffs for DCFC should de-emphasize demand charges and shift more cost to volumetric charges until market matures and utilization rates climb, then scale up demand charges and scale down volumetric charges.
- If demand charges are necessary, they should be designed to recover **only locationspecific costs of connection to the grid, not upstream costs**, so that customers sharing capacity share costs, and continuous-capacity customers are not subsidized by spiky loads.

MANAGED CHARGING


Managed charging of electric vehicles (G2V not V2G) can deliver many benefits *

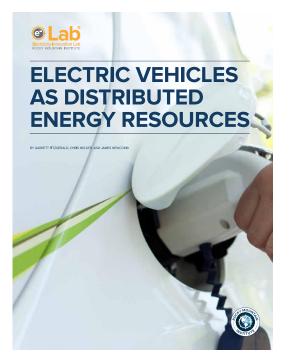
- Optimize existing grid assets and extend their useful life
- Avoid new investment in grid infrastructure
- Supply ancillary services, such as frequency regulation and power factor correction.
- Absorb excess wind and solar generation
- Reduce emissions
- Reduce electricity and transportation costs
- Reduce petroleum consumption
- * But: Managed charging is difficult and costly with DCFC depots



MANAGED CHARGING - PRESSED DUCK

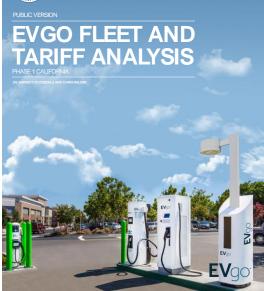
• Projected HECO demand with 23% EV penetration with uncontrolled EV charging

Projected HECO demand with 23% EV penetration with managed EV charging

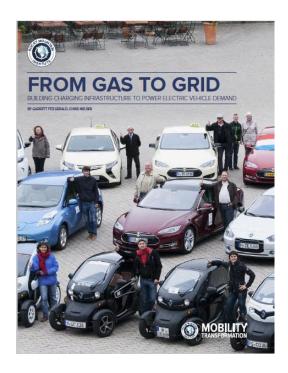


KEY ISSUES

- 1. DCFC is a market failure we will have to correct to achieve our transportation electrification aims.
- 2. Demand charges are problematic with low utilization, spiky loads. If needed at all, demand charges should scale with utilization rates, and only recover location-specific costs of connection to the grid, not upstream costs.
- 3. Utility tariffs should encourage managed charging.
- 4. Charging infrastructure paid for with ratepayer money should **support managed charging.**
- Charging depot loads will be significant. In addition to today's 50-150 kW DCFC loads, let's have a view toward funding & recovering costs for 2 MW loads at public charging depots and 20 MW loads at truck stops.



RMI EV-GRID REPORTS



Electric Vehicles as Distributed Energy Resources (June 2016)

EVgo Fleet and Tariff Analysis (March 2017)

From Gas to Grid (October 2017)

RMI EV-GRID TEAM MANAGER

Chris Nelder

MANAGER, VEHICLE-GRID INTEGRATION ROCKY MOUNTAIN INSTITUTE BOULDER, CO

Chris Nelder is a Manager in the Mobility practice at the Rocky Mountain Institute in Boulder, Colorado, where he heads the EV-grid Integration team. Chris has written about energy and investing for more than a decade. He is the author two books on energy and investing, as well as more than 200 articles on energy in publications such as *Nature, Scientific American, Slate, The Atlantic, Quartz, Financial Times, Greentech Media, SmartPlanet,* and *the Economist Intelligence Unit.* In his spare time, he hosts the Energy Transition Show podcast. He enjoys bantering with other energy geeks on Twitter at <u>@chrisnelder</u>.

