

Draft Proposal for Production Cost Modeling Process to Review IRP Portfolios

Integrated Resource Plan proceeding (R.16-02-007) Modeling Advisory Group Webinar #5 9/6/2017 – 9AM PDT

Webinar Access

Date and Time:

• Sept. 6, 2017, 9AM to 11AM PDT

To Join by Phone:

- Conference number: 712-775-7031
- Participant code: 349332

To Join the Online Meeting:

• Go to: <u>https://www.freeconferencecall.com/join/cpuc_irp</u>

Materials:

 Content from today's and previous MAG webinars or workshops will be posted on the CPUC's website here: <u>http://www.cpuc.ca.gov/General.aspx?id=6442453968</u>

Outline

- Q&A format during the webinar
- IRP Modeling Advisory Group
- Production cost modeling in CPUC processes
- Overall analytical process in IRP
- Production cost modeling objectives
- Scope and Conventions
- Reference System Plan modeling steps
- Preferred System Plan modeling steps
- Standard of Review for LSE Plans
- Q&A

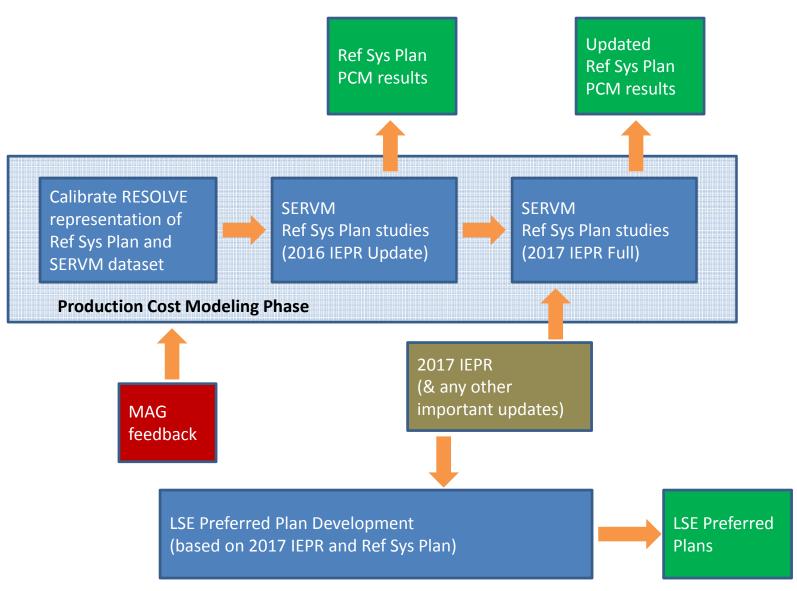
IRP Modeling Advisory Group

- IRP MAG: informal, interactive forum to discuss technical aspects of modeling to support the CPUC's IRP process
 - Q4 2016 discussed RESOLVE capacity expansion model for developing the Reference System Plan
 - Q4 2017 discuss production cost modeling for evaluating the Reference System portfolio and the Preferred System portfolio
 - 8-15-17 workshop discussed CES-21 project's application of the SERVM model to examine reliability and operational flexibility of the CAISO system
 - 9-6-17 webinar introduce Energy Division proposed process to evaluate IRP portfolios using the SERVM model
 - Additional webinars as needed, as schedule allows

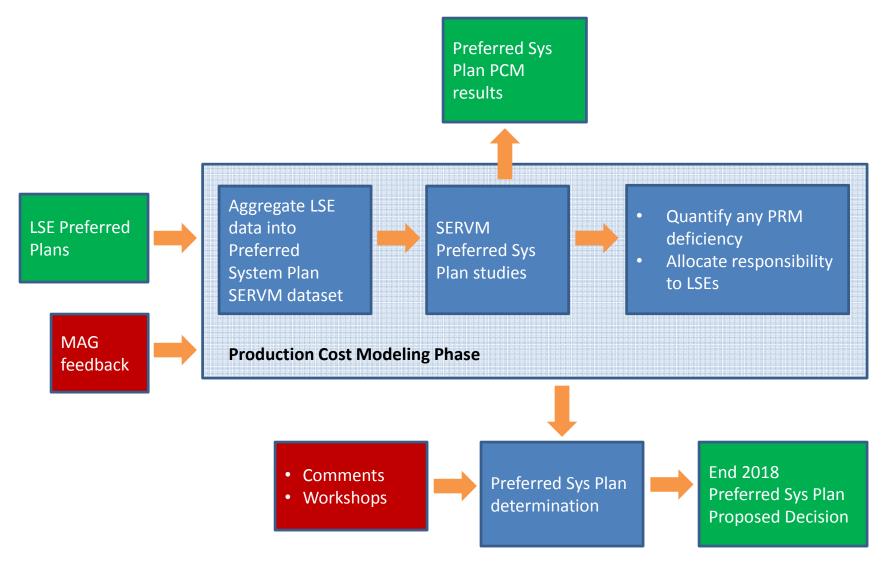
Production cost modeling in CPUC processes

- 2010, 2012, 2014 Long-Term Procurement Plan (LTPP)
 - Modeling testimony: CAISO, SCE, ORA, UCS in 2014 LTPP (R.13-12-010, contact the CPUC docket office)
- 2016 IRP-LTPP
 - Sep 2016 Ruling directing production cost modeling requirements <u>http://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=6442451199</u>
 - Portfolio construction (RESOLVE model)
 - Portfolio evaluation (SERVM model)
- Resource Adequacy (RA) Effective Load Carrying Capability (ELCC) methods for Qualifying Capacity
 - http://www.cpuc.ca.gov/General.aspx?id=6442451972
- Renewables Portfolio Standard (RPS) proposals for marginal ELCC calculations to inform procurement
 - http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M192/K869/192869027.PDF
- Aliso Canyon gas-electric reliability investigation <u>http://www.cpuc.ca.gov/AlisoOII/</u>
- Other
 - Collaborative Review of Planning Models
 <u>http://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=6626</u>
 - CES-21 project <u>http://www.cpuc.ca.gov/General.aspx?id=6442453968</u>

Overall Analytical Process in IRP


Diagram color scheme on following slides:

Input Guidance from agency document	Stakeholder input from agency process	Deliverable
--	--	-------------


Reference System Plan Development

(1) Production Cost Modeling (PCM) Phase

(2) Production Cost Modeling (PCM) Phase

Reference & Preferred System Plan PCM Objectives

- Evaluate Reference and Preferred System portfolios with higher operational detail and wider distribution of conditions
 - Measure probabilistic reliability level, emissions, renewable generation, curtailment, production cost, etc.
 - Determine satisfaction of Planning Reserve Margin (PRM) requirement
 - Calculate marginal ELCCs to inform LSEs' plan development
- Develop a PCM framework to guide other parties' modeling efforts

(1) Modeling Scope & Conventions

- Study years: 2022, 2030
- Hourly timesteps
- Loss-of-load event definitions & counting conventions, and operating reserve targets – consistent with SERVM ELCC modeling in RA
- For ELCC calculations:
 - Target loss-of-load-expectation (LOLE) reliability level 0.1/year total covering the months Jun to Sep
 - Calibration by adding/removing generation consistent with SERVM
 ELCC modeling in RA
- BTM PV modeled as generation rather than part of load

(2) Modeling Scope & Conventions

• Reserve margin accounting conventions:

Component	Counting convention
Peak demand	IEPR 1-in-2 annual peak consumption forecast adjusted for load-modifier impacts but excluding BTM PV impact
Existing non-wind, non-solar	Use current Net Qualifying Capacity values
New non-wind, non-solar	Use same conventions as the RESOLVE model
Wind and solar (including BTM PV), existing and new	Calculate the average portfolio ELCC of these resources combined

- For marginal ELCC calculations:
 - 1000 MW block
 - Only one wind & one solar tech
 - Only CAISO area
 - Only years 2022 and 2030
 - Estimates extracted from the RESOLVE model are a viable alternative

Reference System Plan Modeling Steps

- A. Calibrate RESOLVE representation of the Ref Sys Plan and the SERVM dataset
 - Report areas of alignment and differences between models
 - Post SERVM dataset
- B. Conduct PCM studies for 2022 and 2030
 - Evaluate operational performance, compare to RESOLVE
 - Calculate average portfolio ELCC of wind + solar (including BTM)
 - Calculate reserve margin
 - Repeat for alternative RESOLVE case if needed to support CAISO studies
 - Calculate marginal ELCCs for utility-scale wind and solar in Ref Sys Plan
- C. Update SERVM dataset to use 2017 IEPR
- D. Repeat PCM studies

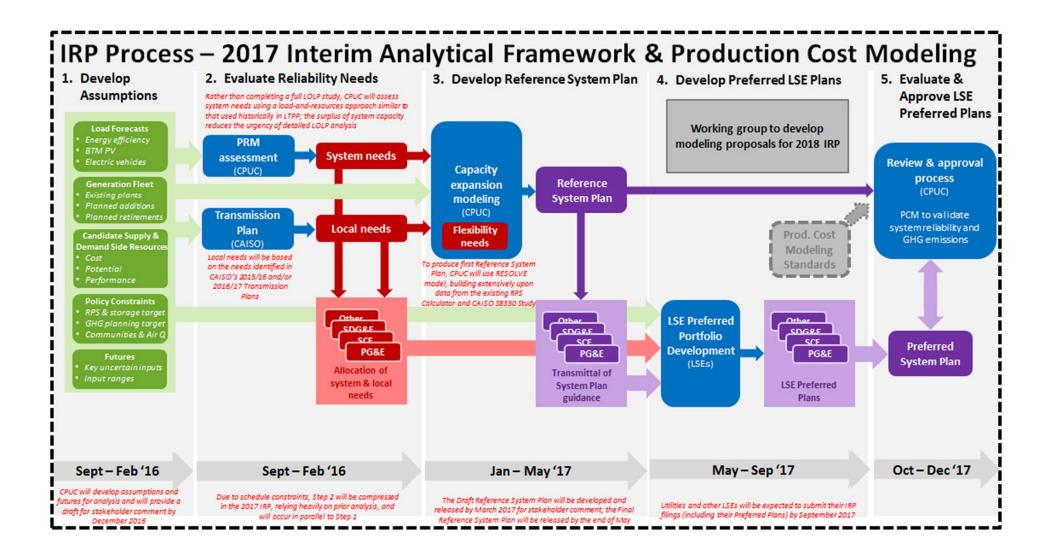
Preferred System Plan Modeling Steps

- A. Aggregate LSE data into Preferred System Plan SERVM dataset
 - Reconcile LSE data with Ref Sys Plan data, adding new data as needed
 - Post SERVM dataset
- B. Conduct PCM studies for 2022 and 2030
 - Evaluate operational performance, compare to Ref Sys Plan studies
 - Calculate average portfolio ELCC of wind + solar (including BTM)
 - Calculate reserve margin
- C. Quantify any reserve margin deficiency and allocate responsibility to LSEs
 - Option A: each LSE procures a share according to load ratio
 - Option B: direct IOUs to procure and use Cost Allocation Mechanism to distribute costs to all benefiting LSEs

Standard of Review for LSE Plans

- PCM techniques will be used to evaluate IRP portfolios at the system level, but not for individual LSEs
- Individual LSE Plans will be evaluated using simpler analytics or reviewing an LSE's own demonstration of meeting requirements
- Assume there are no significant unaddressed market externalities at this time
 - LSEs bear all the costs of their own decisions
 - Low likelihood of significant imposition of costs from one LSE onto others

Q & A



BACKGROUND SLIDES

ELCC terms

- Resource Class ELCC
 - Effective capacity of a whole class of resources in a generation fleet (e.g. all wind units in the N. CA portion of CAISO area)
 - May require diversity adjustment when adding up effective capacity of several classes
- Portfolio ELCC
 - Effective capacity of a whole portfolio of several classes of resources in a generation fleet (e.g. all wind + all solar in the CAISO area)
 - No diversity adjustment it's already part of the portfolio effective capacity
- Average ELCC
 - Effective capacity of a whole resource class or a whole resource portfolio
- Marginal ELCC
 - Effective capacity of a marginal addition of a given resource class
 - If a fleet is "saturated" with a given resource class, the effective capacity of a marginal addition will be very small

Analytical Framework described in Q4 2016

